23 research outputs found

    Distributed Energy Trading: The Multiple-Microgrid Case

    Full text link
    In this paper, a distributed convex optimization framework is developed for energy trading between islanded microgrids. More specifically, the problem consists of several islanded microgrids that exchange energy flows by means of an arbitrary topology. Due to scalability issues and in order to safeguard local information on cost functions, a subgradient-based cost minimization algorithm is proposed that converges to the optimal solution in a practical number of iterations and with a limited communication overhead. Furthermore, this approach allows for a very intuitive economics interpretation that explains the algorithm iterations in terms of "supply--demand model" and "market clearing". Numerical results are given in terms of convergence rate of the algorithm and attained costs for different network topologies.Comment: 24 pages, 8 figures; new version answering reviewers' comments; the paper is now accepted for publication in the IEEE Transactions on Industrial Electronics; the paper is now publishe

    Exclusive Group Lasso for Structured Variable Selection

    Full text link
    A structured variable selection problem is considered in which the covariates, divided into predefined groups, activate according to sparse patterns with few nonzero entries per group. Capitalizing on the concept of atomic norm, a composite norm can be properly designed to promote such exclusive group sparsity patterns. The resulting norm lends itself to efficient and flexible regularized optimization algorithms for support recovery, like the proximal algorithm. Moreover, an active set algorithm is proposed that builds the solution by successively including structure atoms into the estimated support. It is also shown that such an algorithm can be tailored to match more rigid structures than plain exclusive group sparsity. Asymptotic consistency analysis (with both the number of parameters as well as the number of groups growing with the observation size) establishes the effectiveness of the proposed solution in terms of signed support recovery under conventional assumptions. Finally, a set of numerical simulations further corroborates the results.Comment: 36 pages, 2 figures. Not submitted for publication. New licens

    Mathematical Properties of the Zadoff-Chu Sequences

    Full text link
    This paper is a compilation of well-known results about Zadoff-Chu sequences, including all proofs with a consistent mathematical notation, for easy reference. Moreover, for a Zadoff-Chu sequence xu[n]x_u[n] of prime length NZCN_{\text{ZC}} and root index uu, a formula is derived that allows computing the first term (frequency zero) of its discrete Fourier transform, Xu[0]X_u[0], with constant complexity independent of the sequence length, as opposed to accumulating all its NZCN_{\text{ZC}} terms. The formula stems from a famous result in analytic number theory and is an interesting complement to the fact that the discrete Fourier transform of a Zadoff-Chu sequence is itself a Zadoff-Chu sequence whose terms are scaled by Xu[0]X_u[0]. Finally, the paper concludes with a brief analysis of time-continuous signals derived from Zadoff-Chu sequences, especially those obtained by OFDM-modulating a Zadoff-Chu sequence.Comment: 15 pages, 5 figures, not submitted for publicatio

    Floor Map Reconstruction Through Radio Sensing and Learning By a Large Intelligent Surface

    Get PDF
    Environmental scene reconstruction is of great interest for autonomous robotic applications, since an accurate representation of the environment is necessary to ensure safe interaction with robots. Equally important, it is also vital to ensure reliable communication between the robot and its controller. Large Intelligent Surface (LIS) is a technology that has been extensively studied due to its communication capabilities. Moreover, due to the number of antenna elements, these surfaces arise as a powerful solution to radio sensing. This paper presents a novel method to translate radio environmental maps obtained at the LIS to floor plans of the indoor environment built of scatterers spread along its area. The usage of a Least Squares (LS) based method, U-Net (UN) and conditional Generative Adversarial Networks (cGANs) were leveraged to perform this task. We show that the floor plan can be correctly reconstructed using both local and global measurements.Both authors contributed equally to this research. This work has been partially funded by the European Commission under the Windmill project (contract 813999) and the Spanish government under the Aristides project (RTI2018-099722-B-I00). © 2022, IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    Towards Massive Connectivity Support for Scalable mMTC Communications in 5G networks

    Get PDF
    The fifth generation of cellular communication systems is foreseen to enable a multitude of new applications and use cases with very different requirements. A new 5G multiservice air interface needs to enhance broadband performance as well as provide new levels of reliability, latency and supported number of users. In this paper we focus on the massive Machine Type Communications (mMTC) service within a multi-service air interface. Specifically, we present an overview of different physical and medium access techniques to address the problem of a massive number of access attempts in mMTC and discuss the protocol performance of these solutions in a common evaluation framework

    Randomized space-time block coding for the multiple-relay channel

    Get PDF
    En la última década, la cooperación entre usuarios ha generado un gran interés por la posibilidad de mejorar la velocidad de transmisión en las redes de comunicaciones inalámbricas. El objetivo es formar un array con las antenas de todos los dispositivos y, de esta forma, aplicar técnicas de procesado espacio-temporal. El esquema de cooperación más sencillo es el canal con relays: todos los terminales que escuchen una comunicación entre dos puntos pueden ayudar a la fuente retransmitiendo lo que hayan recibido.En un sistema realista, los relays no disponen de información sobre el canal en trasmisión. En este escenario, los códigos espacio-temporales (STC, del inglés space-time coding) son la alternativa más eficiente para aprovechar la diversidad introducida por los relays. Sin embargo, los STC clásicos están diseñados para un número limitado y fijo de antenas transmisoras y no se adaptan bien a sistemas cooperativos donde el número de relays puede ser elevado y, sobretodo, puede variar en el tiempo, según los usuarios entren o salgan de la red. El problema principal es la necesidad de usar un código nuevo cada vez que cambie la configuración de la red, generando un importante tráfico de señalización.Esta tesis analiza un código espacio-temporal a bloques de dispersión lineal (LD-STBC, del inglés linear-dispersion space-time block coding), aleatorio y distribuido: a cada relay se le asigna una matriz aleatoria que aplica una transformación lineal al vector que contiene los símbolos de la fuente. Cada matriz se genera de forma independiente y sin ninguna relación con el número de usuarios involucrados. De esta manera, el número de nodos puede variar sin necesidad de modificar los códigos existentes.La forma más intuitiva de construir matrices de dispersión lineal independientes es que sus elementos sean variables aleatorias independientes e idénticamente distribuidas (i.i.d.). Por esta razón, se estudia primero la eficiencia espectral obtenida por este tipo de LD-STBC. Es importante remarcar que la eficiencia espectral es una cantidad aleatoria, ya que es una función de los códigos aleatorios anteriormente descritos. Sin embargo, cuando las dimensiones de las matrices crecen infinitamente pero manteniendo constante la tasa del código (relación entre número de símbolos de la fuente sobre el número de símbolos de los relays), la eficiencia espectral converge rápidamente hacia una cantidad determinista. Este resultado se demuestra usando la teoría de las matrices aleatorias. Por esta razón, el sistema se analiza aproximando la eficiencia espectral con su limite. Por ejemplo, la comparación con el canal directo entre fuente y destino permite definir unas condiciones suficientes en donde el sistema con relays es superior a la comunicación punto a punto.Posteriormente se debe analizar la probabilidad de outage, es decir la probabilidad de que, debido a la baja calidad del canal, la eficiencia espectral sea menor que la velocidad de transmisión solicitada por el sistema. Como ya se ha mencionado anteriormente, los relays se introducen para aumentar la diversidad del canal y, con ella, el número de caminos independientes entre la fuente y el receptor, reduciendo la probabilidad de outage. Para los LD-STBC i.i.d. las prestaciones en términos de outage dependen del tipo de relay (amplify and forward o decode and forward) y son función de la tasa del código, que debe ser cuidadosamente elegida para maximizar el orden de diversidad sin desperdiciar demasiados recursos.Finalmente, en el último capítulo de la tesis se considera otro tipo de LD-STBC, distinto del i.i.d. analizado hasta ahora. En este caso, las matrices de dispersión lineal siguen siendo independientes la una de la otra pero se añade la restricción de que cada una tenga columnas (o filas, según la tasa del código) ortogonales. Así, se consigue que el código siga siendo flexible con respecto a las variaciones en el número de usuarios, pero su estructura permite reducir la interferencia generada por cada relay, como se puede notar comparando su eficiencia espectral con la eficiencia espectral obtenida por el código i.i.d. Cabe destacar que el análisis asintótico de estos códigos (llamados isométricos) se basa en herramientas matemáticas más sofisticadas que las anteriores y, por lo tanto, es necesario un estudio más profundo para poder entender cómo se comporta en términos de outage.In the last decade, cooperation among multiple terminals has been seen as one of the more promising strategies to improve transmission speed in wireless communications networks. Basically, the idea is to mimic an antenna array and apply distributed versions of well-known space-diversity techniques. In this context, the simplest cooperative scheme is the relay channel: all the terminals (relays) that overhear a point-to-point communication between a source and a destination may decide to aid the source by forwarding (relaying) its message.In a mobile system, it is common to assume that the relays do not have any information about the channel between them and the destination. Under this hypothesis, the best solution to exploit the diversity offered by multiple transmitting antennas is to use space-time coding (STC). However, classical STC's are designed for systems with a fixed and usually low number of antennas. Thus, they are not suitable for relaying in most mobile communications systems where the number of terminals is potentially large and may vary as users join or leave the network. For each new configuration, a new code has to be chosen and notified to the relays, introducing a set-up overhead of signaling traffic.In this dissertation we will propose and analyze a randomized distributed linear-dispersion space-time block code (LD-STBC): each relay is assigned a specific matrix which linearly transforms (left-multiplies) the column vector of source symbols. Each matrix is independently generated and does not depend on the total number of transmitters, which can thus change without interrupting data transmission for a new code--relay assignment.The more intuitive way to build independent linear-dispersion matrices is to fill them with independent and identically distributed (i.i.d.) random variables. Therefore, we will first consider these i.i.d. codes and characterize the resulting spectral efficiency. In order to analyze the performance achieved by the system, we consider a large-system analysis based on random matrix theory. We will show that the random spectral efficiency (function of the random linear-dispersion matrices) converges almost surely to a deterministic quantity when the dimensions of the code grow indefinitely while keeping constant the coding rate. Since convergence is very fast, the random spectral efficiency will be approximated by the deterministic limit in the subsequent analysis. By comparison with the direct link, sufficient conditions are derived for the superiority of relaying.Next, we will analyze the outage probability of the system, that is the probability that the spectral efficiency falls below a given target rate due to channel fading. The main purpose of diversity techniques is to introduce alternative paths from the source to the destination, so that data transmission does not fail when the direct link undergoes deep fading. We will show that the diversity behavior of LD-STBC relaying mainly depends on both the coding rate and the relaying strategy (amplify and forward or decode and forward). It is then important to choose the coding rate that maximizes the diversity order without wasting too many resources.To conclude the dissertation, we will consider a different code based on independent isometric Haar-distributed random linear-dispersion matrices. Thenew code maintains the flexibility of the previous one with respect to variations in the number of relays. However, the more complex structure of the codes allows a noticeable reduction of the interference generated by the relays. Unfortunately, isometric codes also require more sophisticated mathematical tools for their asymptotic analysis. For this reason, we simply introduce the problem by showing that it is possible to have some spectral-efficiency gain with respect to i.i.d. codes. The outage-probability analysis requires a more thorough understanding and will be the subject of future work

    Parallelized Structures for MIMO FBMC under Strong Channel Frequency Selectivity

    No full text
    A novel architecture for MIMO transmission and reception of filterbank multicarrier (FBMC) modulated signals under strong frequency selectivity is presented. The proposed system seeks to approximate an ideal frequency-selective precoder and linear receiver by Taylor expansion, exploiting the structure of the analysis and synthesis filterbanks. The resulting architecture is implemented by linearly combining conventional MIMO linear transceivers, which are applied to sequential derivatives of the original filterbank. The classical per-subcarrier precoding/linear receiver configuration is obtained as a special case of this architecture, when only one stage is fixed at both transmitter and receiver. An asymptotic expression for the resulting intersymbol/intercarrier (ISI/ICI) distortion is derived assuming that the number of subcarriers grows large. This expression can in practice be used in order to determine the number of parallel stages that need to be implemented in the proposed architecture. Performance evaluation studies confirm the substantial advantage of the proposed scheme in practical frequency-selective MIMO scenarios.Grant numbers . This work was partially supported by the Spanish and Catalan Governments under grants TEC2014-59255-C3-1 (ELISA) and 2014-SGR-1567.© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
    corecore